
January 1999 The Delphi Magazine 61

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Is This Property Published?

QConsider the TCustomPanel
component class, where the

BevelInner property is protected.
Now consider a program that loads
many components at runtime,
some of which descend from
TCustomPanel, for example TPanel1,
TPanel2, etc. Some of these
TCustomPanel descendants have
BevelInner as a published prop-
erty, while others do not. This is
the question: is there a way to
check at runtime if the property
BevelInner of the arbitrary loaded
component is published?

AThis sounds like something
looking for a generic solu-

tion. When a property is published,
it has RTTI (runtime type informa-
tion) generated for it. We can use
the support routines in the TypInfo
unit to check whether RTTI exists
for a given property and this will
answer the question.

Listing 1 shows a function that
takes a class reference and a prop-
erty name. Its Boolean return value
suggests whether the property is
published in that class. The point
about taking a class reference
(rather than an object reference) is

that you don’t need an instance of
the class to call this routine. If you
want, you can pass the name of a
class through to it, as in:
if IsPropPublished(TPanel,
‘BevelInner’) then…

Or, as Listing 1 shows, you can get
a class reference for any object by
referring to its ClassType method.

SQL Cursor Banished

QI know the SQL hourglass
cursor is supposed to por-

tray more than the normal hour-
glass cursor, but I don’t like it. Is it
possible to tell the database sup-
port code not to use it any more?

AOne solution would be to set
the Session’s SQLCursorprop-

erty to False before it is opened.
However, according to a message I
saw from Benjamin Petersen on the
CIX conference system, you have
another option. The following
statement will make any reference
to the offending cursor produce a
normal hourglass instead; put the
statement in your project source
file (include the Controls unit in
uses) or in your main form’s
OnCreate event handler:

Screen.Cursors[crSQLWait] :=
Screen.Cursors[crHourGlass];

Bracket Matching

QDoes Delphi offer any
bracket matching facility?

AYou have several keystrokes
you can choose from. In the

editor, place the cursor before any
type of bracket (normal, square or
curly) you are interested in finding
the match for. If you are using the
default, classic or Brief keystroke
mappings, you can use Ctrl+Q+[,
Ctrl+Q+Ctrl+[, Ctrl+Q+] or
Ctrl+Q+Ctrl+]. Default keystroke
mapping users can also choose to
use Alt+[or Alt+]. Epsilon
mapping users can use Ctrl+Alt+B,
Esc+Ctrl+B, Alt+), Esc+),
Alt+Shift+0, Ctrl+Alt+F or
Esc+Ctrl+F.

Win32 System Modal Window

QIn Issue 16 you described
how to make a system modal

window in a 16-bit Windows appli-
cation. Is there a way to do this in
32-bit Windows also?

AWell, you caught me out
there. I did indeed omit any

references to Win32 in that answer
from a couple of years ago. In Win-
dows 95/98, this is actually quite
possible, but NT rather denies us
the pleasure as far as I can find.

For non-NT 32-bit systems, we
should consider a screen saver.
When it starts up, it takes over the
desktop area. If the user tries to do
anything, one of two things will
happen. Either the screen saver
will immediately terminate, or a
password dialog will appear. If the
latter pops up, the user is obliged
to enter the correct password
before continuing. Ctrl+Esc (Start
menu), Ctrl+Alt+Del (close pro-
gram) and Alt+Tab (switch to other

➤ Listing 1

function IsPropPublished(AClass: TClass; const PropName: String): Boolean;
begin
Result := GetPropInfo(AClass.ClassInfo, PropName) <> nil

end;
procedure TForm1.Button1Click(Sender: TObject);
const
MsgYes = '%s looks good';
MsgNoGood = '%s is not based on a TCustomPanel';
MsgNearly = '%s doesn''t have it published';

var Loop: Integer;
begin
for Loop := 0 to Pred(ComponentCount) do
if Components[Loop] is TCustomPanel then
if IsPropPublished(Components[Loop].ClassType, 'BevelInner') then
ShowMessage(Format(MsgYes, [Components[Loop].Name]))

else
ShowMessage(Format(MsgNearly, [Components[Loop].Name]))

else
ShowMessage(Format(MsgNoGood, [Components[Loop].Name]))

end;

62 The Delphi Magazine Issue 41

program) do nothing as they have
been disabled.

The screen saver password
dialog is not so much a modal
window, as a window that is dis-
played once those system key-
strokes have been disabled. The
fact that the screen saver occupies
the whole screen helps out here: if
it only covered a portion of the
desktop, you would still be able to
switch quite happily to another
program by simply clicking one of
its windows.

So a Win32 modal window can be
simulated by having a maximised
window, hiding the taskbar if nec-
essary, and then fooling Windows
into thinking a screen saver is
running (thereby disabling those
keystrokes). The key to making
Windows believe it has an active
screen saver is to call System-
ParametersInfo, with a parameter
of spi_ScreenSaverRunning. This is a
constant defined with a value of 97,
and even a 16-bit program running
on Windows 95/98 can successfully
use this call (using the literal value,
as the constant is not defined in
Delphi 1) to disable the aforemen-
tioned system keystrokes.

Listing 2 shows a routine from
Modal.Dpr that you can use to start
and stop a system ‘modal’ window
by disabling and re-enabling the
system keystrokes. Notice the
code checks for Windows NT and
does not hide the taskbar, since
the faked screen saver logic is only
effective in Windows 95/98. Check-
ing for Windows NT from a Delphi 1
program was explored in Issue 21,
page 56.

An alternative approach that
might be more like how we would
expect a system modal window to
look, would be as follows. Rather

procedure SetKeyboardAndTaskbarSwitching(Enable: Boolean);
var OldVal: Bool;
const
TaskBarWnd: HWnd = 0; { Task bar window handle }
ShowFlags: array[Boolean] of Integer = (sw_Hide, sw_ShowNoActivate);
{$ifdef Windows}
spi_ScreenSaverRunning = 97;
{$endif}
begin
SystemParametersInfo(spi_ScreenSaverRunning, Word(not Enable), @OldVal, 0);
{$ifdef Win32}
if Win32Platform = VER_PLATFORM_WIN32_WINDOWS then begin
{$else}
if GetWinFlags and $4000 = 0 then begin
{$endif}

if TaskBarWnd = 0 then
TaskBarWnd := FindWindow('Shell_TrayWnd', nil); { Find task bar }

ShowWindow(TaskBarWnd, ShowFlags[Enable]); { Hide/show task bar }
end

end;

than making the ‘modal’ window a
full screen maximised window, we
could leave it normal sized by
cheating. Just before displaying
the window that is to be modal, we
can take a snapshot of the
Windows desktop, make a new
temporary form with a TImage on it,
and display that maximised. Then,
when the ‘modal’ window comes
up, clicking on anything in the
background will do nothing (as it
will be just part of the image on the
form). Listing 3 shows a method of
a form in Modal2.Dpr that can be
called to launch the form as a
system modal window.

Bad Editor Line Numbers

QWhen compiling one project
of mine, errors are reported

wrongly. The compiler always tells
me the problem is several lines
earlier than it actually occurs.
Obviously, this proves rather irri-
tating. What’s going on?

AFigure 1 shows an example
of this problem. Basically

the issue is that your unit file is a
text file. Text files have lines
separated by carriage returns and
line feeds. You may have edited the

file in an editor
that didn’t use
the appropriate
line end pattern
expected by
Delphi’s error re-
porting system.

Alternatively you may have
pasted a code section in from a
badly laid out email message, or
some such other source. As a con-
sequence, the compiler doesn’t
correctly count up the lines to
report the error. It thinks that the
characters before and after the
line terminator are from the same
line, assuming the line terminator
is just another character.

If you copy all the text in the
editor to the clipboard (Edit |
Select All, Edit | Copy) and then
paste it into Notepad you can get a
clearer indication of the problem
(see Figure 2).

What you can do in Notepad is to
select these black squares
(printed representations of the
decimal characters 10 and/or 13,
the line feed and carriage return
characters respectively) and
press the Enter key. That will
replace each selected square with
the generally accepted pattern for
carriage returns and linefeeds.
You can then copy the text back
into the Delphi editor, and the
error reporting should (hopefully)
be able to count the lines
correctly.

Backspace And New Line

QMyself and a colleague both
have Delphi 3. I have noticed

a small but irritating difference
between the operation of our

➤ Listing 2

➤ Left:
Figure 1

➤ Right:
Figure 2

63 The Delphi Magazine Issue 41

Delphi installations. When at the
beginning of a line in the editor,
pressing backspace will take my
colleague to the end of the previ-
ous line, deleting the carriage re-
turn and line feed pair that made
the line in the first place. However
when I am at the beginning of a line,
pressing backspace does nothing.
What is wrong on my machine?

AThere is nothing really
wrong as such. You have

probably got the editor set up to
use the Brief emulation keystroke

mapping. Since Brief did not
support backspace at the begin-
ning of a line, then neither does
Delphi when it is emulating Brief. If
you really need that functionality, I
recommend you choose Default or
Classic modes.

Incidentally, to be accurate I
should really write Brief as BRIEF,
since the original DOS editor’s
name was a somewhat contrived
acronym for Basic Reconfigurable
Interactive Editing Facility.
Another side note, just for those
who are unaware: Brief was
originally marketed by
UnderWare.

Edit-Less TDBGrid

QIf I make a dataset read-only,
then a DBGrid connected to it

will not allow me to edit any field
values, but it sort of looks like it
will. What I mean is that when I se-
lect a cell, I can press F2 and get the
cursor flashing waiting for me to
type, but then the grid does not ac-
cept any characters. How do I get
the grid to look convincingly
uneditable?

AYou need to set the relevant
option to inform the grid not

to manufacture and display its

function TFrmModalForm.ShowSystemModal: Integer;
var
Desktop: TForm;
DesktopDC: HDC;

begin
Desktop := TForm.CreateNew(nil);
try
{ Clear form seems to make less flicker }
Desktop.Brush.Style := bsClear;
Desktop.WindowState := wsMaximized;
Desktop.BorderStyle := bsNone;
DesktopDC := GetWindowDC(GetDesktopWindow);
try
with TImage.Create(Desktop) do begin
Align := alClient;
Picture.Bitmap.Height := Screen.Height;
Picture.Bitmap.Width := Screen.Width;
BitBlt(Canvas.Handle, 0, 0, Screen.Width,

Screen.Height, DesktopDC, 0, 0, srcCopy);
Parent := Desktop;

end
finally
ReleaseDC(GetDesktopWindow, DesktopDC)

end;
Desktop.Show;
{ Ensure when anyone clicks on what looks like }
{ another window, all they get is a beep }
Desktop.Enabled := False;
SetKeyboardAndTaskbarSwitching(False);
Result := ShowModal;
SetKeyboardAndTaskbarSwitching(True)

finally
Desktop.Free

end;
end;

➤ Listing 3

64 The Delphi Magazine Issue 41

in-place editor. In the Object
Inspector, expand the DBGrid’s Op-
tions property, and set dgEditing
to False, or in code write
something like:

DBGrid1.Options :=

DBGrid1.Options - [dgEditing];

The situation is reversed with a
TStringGrid. Some people do not
realise that a string grid does
support editing if you enable the
goEditing entry of its Options
property:

StringGrid1.Options :=

StringGrid1.Options +

[goEditing];

Control Panel Invocation

QMy Win32 application has a
need to invoke one of the

Control Panel applets, to allow the
user to change some settings. I
don’t know how to do this. Do you?

AWell I didn’t, but having
looked into the problem, I

now do. Most of the Control Panel
applications are DLLs with .CPL file
extensions, which conform to the
Microsoft Control Panel applet re-
quirements (specific exported rou-
tines that do specified tasks). The
others seem to be special cases
that Control Panel deals with in dif-
ferent ways, such as Sounds and
Users. I will assume that you are
only interested in the .CPL files.

We could read up on the Control
Panel extension specification,
learn about how to call the
exported routines, load the .CPL
file, locate the routines and call
them appropriately, but there are
other routes we can take.

To deal with the problem indi-
rectly, we can ask Windows to

launch the Control Panel applet.
Rather than get bogged down in
the details of how to correctly
invoke a Control Panel applet, we
can delegate the responsibility to a
Windows shell routine. Both the
32-bit Shell32.Dll and the Win32
16-bit equivalent Shell.Dll in
Windows 95 and Windows NT
implement a routine called Con-
trol_RunDLL. This takes one PChar
parameter indicating the Control
Panel applet file name.

As an additional saving in effort,
we can call this Shell routine
through a helper application. A
Win32 application called
RunDll32.Exe, and also a 16-bit
application called RunDLL.Exe, are
available to launch a DLL routine
(with a specific parameter list) for
you. These both take a com-
mand-line that specifies a target
DLL and a routine name, along with
a string that is passed as the sole
parameter to the specified entry
point routine. In fact this is exactly
what Windows Explorer does when
you double click a .CPL file.

So all we need to do to execute,
for example, DESK.CPL (the Display
Properties Control Panel applet) is
to execute the command line:

RunDLL32.Exe shell32.dll,
Control_RunDLL Desk.CPL

Listing 4 shows some code from
CPanel.Dpr, an application that
allows you to test out the idea. It
loops through all the *.CPL files
and displays their filenames in a
listbox. When you double click a
file name, the corresponding Con-
trol Panel applet is launched and
the command line is displayed on
the form’s caption bar. Figure 3
shows the program after having
launched the Display Properties
Control Panel applet.

You could also start with the fact
that Control.Exe is the (small) stub
program that launches Control
Panel. It can take a command line
parameter indicating which applet
to launch. This can be descriptive
(eg Control Desktop) or a .CPL
name (eg Control Desk. cpl). Exam-
ining my Control.Exe in a file
viewer leads me to conclude that
these descriptive command line
parameters are supported (the
part in brackets is the equivalent
command line parameter):

DESKTOP (desk.cpl)
COLOR (desk.cpl,,2)
DATE/TIME (datetime.cpl)
PORTS (sysdm.cpl,,1)
INTERNATIONAL (intl.cpl)
MOUSE (main.cpl)
KEYBOARD (main.cpl @1)
PRINTERS (main.cpl @2)
FONTS (main.cpl @3)

Additionally, CONTROL MAIN.CPL @4
gives Power Management settings,
and CONTROL MAIN.CPL @5 gives PC
Card Settings.

Thanks go to Euan Garden for
help in testing out some of this
month’s answers.

procedure TForm1.FormCreate(Sender: TObject);
{$ifdef Windows} const MAX_PATH = 255; {$endif}
var
SysDirC: array[0..MAX_PATH] of Char;
SysDir: String;
SearchRec: TSearchRec;

begin
GetSystemDirectory(SysDirC, SizeOf(SysDirC));
SysDir := StrPas(SysDirC);
if FindFirst(SysDir + '*.cpl',
faAnyFile, SearchRec) = 0 then
try
repeat
ListBox1.Items.Add(UpperCase(SearchRec.Name));

until FindNext(SearchRec) <> 0;

finally
FindClose(SearchRec);

end;
end;
procedure TForm1.ListBoxDblClick(Sender: TObject);
var Param: String;

ParamC: array[0..255] of Char;
begin
Param := 'shell32.dll,Control_RunDLL ' +
ListBox1.Items[ListBox1.ItemIndex];

Caption := Param;
StrPCopy(ParamC, Param);
ShellExecute(Handle, nil, 'RunDll32.exe',
ParamC, nil, sw_ShowNormal)

end;

➤ Listing 4

➤ Figure 3

	Is This Property Published?
	SQL Cursor Banished
	Bracket Matching
	Win32 System Modal Window
	Bad Editor Line Numbers
	Backspace And New Line
	Edit-Less TDBGrid
	Control Panel Invocation

